质控

输入文件数据
names(inputFiles) <-c("AS1_ATAC","ERA_pbmc_1","ERA_SF_1_ATAC","ERA_SF_2_ATAC","load_AS_scATAC","load_Healthy_scATAC")
构建Arrow对象

  inputFiles = inputFiles,
  sampleNames = names(inputFiles),
  filterTSS = 4, #Dont set this too high because you can always increase later
  filterFrags = 1000, 
  addTileMat = TRUE,
  addGeneScoreMat = TRUE
)

计算双细胞的分数(DoubletScores)

doubScores <- addDoubletScores(
    input = ArrowFiles,
    k = 10, #Refers to how many cells near a "pseudo-doublet" to count.
    knnMethod = "UMAP", #Refers to the embedding to use for nearest neighbor search with doublet projection.
    LSIMethod = 1
)

R^2用于描述样本中的细胞异质性,如果该数值非常小(例如小于0.9),说明该样本的细胞都非常相似。那么使用模拟的方法去鉴定doublet就不太合适了。这个很好理解,如果所有细胞都表达一个基因,并且表达量是1,那么你模拟的doublet也会只有一个细胞,且表达量是均值1,结果就是所有细胞都是doublet。在这种情况下,我们推荐跳过doublet预测这一步。或者你可以尝试设置knnMethod = "LSI",force = TRUE,在LSI子空间中进行投影。(相当于提高分辨率)。

doubScores <- addDoubletScores(
  input = ArrowFiles,
  k = 10, #Refers to how many cells near a "pseudo-doublet" to count.
  knnMethod = "LSI",force = TRUE, 
  LSIMethod = 1
)

在你的QualityControl目录下存在结果文件:


AS_1.png

ERA_pbmc.png

ERA_SFMC_1.png

ERA_SFMC_2.png

load_AS.png

load_healthy.png

创建ArchRProject

proj <- ArchRProject(
  ArrowFiles = ArrowFiles,
  outputDirectory = "ArchROutput",
  copyArrows = F,
  geneAnnotation = getGeneAnnotation(),
  genomeAnnotation = getGenomeAnnotation(),
  showLogo = TRUE,
  threads = getArchRThreads()
)

质控:

##没去除之前的统计
cellcoldata_proj <- as.data.frame(proj@cellColData)
table(cellcoldata_proj$Sample)
quantile(proj_5$TSSEnrichment)

结果:


过滤前细胞数.png
###筛选出TSSEnrichment >= 8的细胞
idxPass <- which(proj$TSSEnrichment >= 5 & proj$DoubletScore == 0 & proj$DoubletEnrichment <= 0.5)
cellsPass <- proj$cellNames[idxPass] 
proj_5 <- proj[cellsPass,]
##按照名称检索一列,例如每个细胞的唯一核(非线粒体)片段数
cellcoldata_proj_5 <- as.data.frame(proj_5@cellColData)
table(cellcoldata_proj_5$Sample)

结果:


过滤后细胞数.png

考虑是否将Load_AS去除,因为细胞数过少。
先放着往后分析。

df <- getCellColData(proj_5,select = c("log10(nFrags)","TSSEnrichment"))
df
p <- ggPoint(
  x=df[,1],
  y=df[,2],
  colorDensity = T ,
  continuousSet = "sambaNight",
  xlabel = "Log10 Unique Fragments",
  ylabel = "TSS Enrichment",
  xlim = c(log10(500),quantile(df[,1],probs = 0.99)),
  ylim = c(5,quantile(df[,2],probs = 0.99)))+ geom_hline(yintercept = 8,lty = "dashed") + geom_vline(xintercept = 3,lty = "dashed")
plotPDF(p,name = "TSS-vs-FRAG.pdf",ArchRProj = proj_5,addDOC = T)
TSS_enrichment.png
ridges_TSS.png

violin_TSS.png

ridges_nFrags.png

violin_nFrags.png

FragmentSizes.png

TSSEnrichment.png

参考内容: 徐洲更 [果子学生信] 如果单细胞不是单细胞,那还做什么单细胞?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容