编辑距离 (Levenshtein Distance算法)

很久没有写算法了, 个人算法中等, 不好不坏. 觉的学习算法的好处很多, 还可以保持大脑活跃度, 因此最近会写些算法的博客.

这篇文章的算法是工作中用到的. 一个成熟的动态规划算法.介绍给大家.

编辑距离 (Levenshtein Distance算法)

字符串的编辑距离,又称为Levenshtein距离,由俄罗斯的数学家Vladimir Levenshtein在1965年提出。是指利用字符操作,把字符串A转换成字符串B所需要的最少操作数。其中,字符操作包括:

删除一个字符 a) Insert a character
插入一个字符 b) Delete a character
修改一个字符 c) Replace a character
例如对于字符串"if"和"iff",可以通过插入一个'f'或者删除一个'f'来达到目的。

一般来说,两个字符串的编辑距离越小,则它们越相似。如果两个字符串相等,则它们的编辑距离(为了方便,本文后续出现的“距离”,如果没有特别说明,则默认为“编辑距离”)为0(不需要任何操作)。不难分析出,两个字符串的编辑距离肯定不超过它们的最大长度(可以通过先把短串的每一位都修改成长串对应位置的字符,然后插入长串中的剩下字符)。

问题描述

给定两个字符串A和B,求字符串A至少经过多少步字符操作变成字符串B。

问题解决

  1. 当其中某个字符串长度为0的时候,编辑距离就是另一个字符串的长度. (我们可以理解为, 对长度为0的字符串一直插入字符变成另一个字符串)

  2. 当字符串不等的时候, 我们总是习惯性的从字串开头开始看.

    那么A[0] = B[0];的时候, 那么此时编辑距离依旧是0, 我们可以直接去除字符串的第一个字符了. 因为此时A与B的编辑距离应该是等于A[1]..A[A.length-1], B[1]..B[B.length-1]两者的编辑距离的.

    如果A[0] != B[0], 那么此时我们要考虑的很多了, A[0] 会不会与B[1]相等, 这样只要添加一个字符就可以了. B[0] 会不会与A[1]相等, 或者A[1]与B[1]也不相等. 这样

    若我们从后面往前看,ij代表a,b 的长度,我们让求编辑距离的方法为f

    当 a[i] = a [j] 时候,f(i, j) = f(i-1, j-1);

    a[i] != a [j] 时候,f(i, j) = f(i-1, j-1) + 1; 或者是 f(i, j-1) +1 或者是f(i-1, j) + 1;

    那么此时动态转移方程为

   f(i,j) = max(i,j)  if i与j其中一个为0<br>
   f(i,j) = f(i-1,j-1) if a[i]=a[j]
   f(i,j) = min (f(i-1,j-1) + 1,
                f(i, j-1) + 1,
                f(i-1, j) + 1);

这是一个动态规划问题.使用公式我们可以很快写出递归方法

public static int getEditDistanceByRecursion(String a, String b, int aIndex, int bIntex) {
    if (Math.min(aIndex, bIntex) == 0) {
        return Math.max(aIndex, bIntex);
    }
    if (a.charAt(aIndex) == b.charAt(bIntex)) {
        return getEditDistanceByRecursion(a, b, aIndex - 1, bIntex - 1);
    }

    return Math.min(getEditDistanceByRecursion(a, b, aIndex - 1, bIntex - 1) + 1,
            Math.min(getEditDistanceByRecursion(a, b, aIndex, bIntex - 1) + 1,
                    getEditDistanceByRecursion(a, b, aIndex - 1, bIntex) + 1));
}

但是递归的最大缺点为重复计算. 多次计算同一个结果. 我们需要一个表来存储重复计算的结果.

代码如下

public static int getEditDistance(String origin, String target) {

    if (TextUtils.isEmpty(origin) && TextUtils.isEmpty(target)) {
        return 0;
    }

    if (TextUtils.isEmpty(origin)) {
        return target.length();
    }

    if (TextUtils.isEmpty(target)) {
        return origin.length();
    }

    int[][] dp = new int[origin.length() + 1][target.length() + 1];

    for (int i = 0; i <= origin.length(); i++) {
        dp[i][0] = i;
    }

    for (int j = 0; j <= target.length(); j++) {
        dp[0][j] = j;
    }

    for (int i = 1; i <= origin.length(); i++) {
        for (int j = 1; j <= target.length(); j++) {
            if (origin.charAt(i - 1) == target.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1];
            } else {
                dp[i][j] = dp[i - 1][j - 1] + 1;
            }

            dp[i][j] = Math.min(dp[i][j], Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
        }
    }
    return dp[origin.length()][target.length()];
}

如果我们需要求两个字符串的相识度,则是:

public static float getSimilarity(String origin, String target) {

    if (TextUtils.isEmpty(origin) || TextUtils.isEmpty(target)) {
        return 0f;
    }

    return 1.0f - getEditDistance(origin, target) / (float) Math.max(origin.length(), target.length());
}

谢谢大家的阅读。

我的练习算法的仓库, 也欢迎关注https://github.com/Jerey-Jobs/Algorithm


本文作者:Anderson/Jerey_Jobs
博客地址 : http://jerey.cn/
简书地址 : Anderson大码渣
github地址 : https://github.com/Jerey-Jobs

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容

  • 在C语言中,五种基本数据类型存储空间长度的排列顺序是: A)char B)char=int<=float C)ch...
    夏天再来阅读 3,323评论 0 2
  • 专业考题类型管理运行工作负责人一般作业考题内容选项A选项B选项C选项D选项E选项F正确答案 变电单选GYSZ本规程...
    小白兔去钓鱼阅读 8,975评论 0 13
  • 虚实的原则 1. 都要以实击虚,以我的优势来对抗对方的薄弱之处。 2. 每个人每个组织都是有虚实之处的,这是必然的...
    oilyne阅读 574评论 0 2
  • 文 | 东临瑞 图 | 网络(侵删) 虽然错过了一辈子,但爱过,就是一生一世。 ——安然 最开始是唐山大地震,...
    且以沧海寄余生阅读 145评论 0 0
  • 『断雁无凭,冉冉飞下汀洲,思悠悠。』 白衣少年倚着阑干,微眯眼望着远远一碧如洗的青山。正是深秋露重,一阵细雨后,雕...
    木舟舟_Anchong阅读 596评论 0 0