Chapter 7

Chapter 7: n-step Bootstrapping

n-step TD methods span a spectrum with MC methods at one end and one-step TD methods at the other.

n-step TD Prediction

The target estimation of value functions in n-step TD is a combination of the first n steps' sample rewards and bootstrapping the value estimation of the sampled state after n steps, i.e., G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n}). Correspondingly, the update rule is V_{t+n}(S_t) = V_{t+n-1}(S_t) + \alpha [G_{t:t+n} - V_{t+n-1}(S_t)]. Note that only the value of S_t changes at step t, while the values of all the other states remain unchanged, i.e., V_{t+n}(s) = V_{t+n-1}(s) for \forall s \neq S_t. An issue here is that the value estimation of V_{t+n-1}(s) may be updated long ago and does not reflect the true value of s under the current policy \pi_{t+n-1} in expectation. This is not covered in the RL book and I'm not sure if this will cause any problem in RL.
One-step TD (as introduced in the last chapter) can be seen as a special case of n-step TD when n=1, i.e., G_{t:t+1} = R_{t+1} + \gamma V_t(S_{t+1}). MC can be seen as the extreme of n-step TD in the opposite direction when n equals to the episode length, i.e., G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-t-1} R_T.

n-step Sarsa

n-step Sarsa is a natural generalization of 1-step Sarsa with the target estimation as G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{n-1} R_{t+n} + \gamma^{n} Q_{t+n-1}(S_{t+n}, A_{t+n}), and the corresponding update rule is Q_{t+n}(S_t, A_t) = Q_{t+n-1}(S_t, A_t) + \alpha [G_{t:t+n} - Q_{t+n-1}(S_t, A_t)]. The RL book gives a gridworld example as shown below to illustrate the advantage of n-step Sarsa compared to one-step Sarsa. When the reward is sparse, n-step Sarsa can help speed up the reward propagation the earlier states.

n-step Sarsa example.

n-step Off-policy Control

For n-step off-policy control, we need to take importance sampling into consideration, which leads to the update rule as follows: Q_{t+n}(S_t, A_t) = Q_{t+n-1}(S_t, A_t) + \alpha \rho_{t+1:t+n} [G_{t:t+n} - Q_{t+n-1}(S_t, A_t)], where \rho_{t:h} = \prod_{k=t}^{min(h,T-1)} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}. Note that the ratio starts from step t+1 because we do not have to care how likely we were to select the action A_t; now that we have selected it we want to learn fully from what happens, with importance sampling only for subsequent actions. This also explains why one-step Q-learning do not have the ratio term, as \rho_{t+1:t+n} = 1 for n=1.

Off-policy Learning Without Importance Sampling: The n-step Tree Backup Algorithm

Importance sampling is required in Q-learning because it is a sample update method. So we need to multiply with the importance sampling ratio to make the update's expectation unbiased w.r.t. the target policy. Thus a natural way to avoid importance sampling is to perform expected update w.r.t. the target policy \pi, i.e., the n-step tree backup algorithm.
In its simplest case with n=1, tree backup is exactly expected Sarsa, i.e., G_{t:t+1} = R_{t+1} + \gamma \sum_a \pi(a|S_{t+1}) Q_t(S_{t+1}, a).
For a = A_{t+1}, we can further expand the corresponding Q_t(S_{t+1}, a) term in the equation above to get a two-step target. Recursively, we can get the tree backup target as follows: G_{t:t+n} = R_{t+1} + \gamma \sum_{a \neq A_{t+1}} \pi(a|S_{t+1}) Q_{t+n-1}(S_{t+1},a) + \gamma \pi(A_{t+1}|S_{t+1}) G_{t+1:t+n}. And the update rule without importance sampling is Q_{t+n}(S_t, A_t) = Q_{t+n-1}(S_t, A_t) + \alpha [G_{t:t+n} - Q_{t+n-1}(S_t, A_t)].

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容