EM 期望最大算法

1.极大似然估计

众所周知,极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

我们先来假设这样一个问题:要求解人群(100人)中男女身高的分布,这里很明显有两种分布,男和女,但是事先我们并不知道他们服从哪种分布,而且我们也不知道男的有多少人,女的有多少人,那么怎么办呢?如果我们用混合高斯模型(GMM),我们假设男和女的分布都是符合高斯分布的,然后给定这个高斯分布一个初始值,这样这个高斯分布就是已知的了。接着,用这个已经的高斯分布来估计男的多少人,女的多少人,假设男和女的类别分布为Q(z),这样我们就可以求Q(z)的期望了,用期望来表示下一次迭代类别的初始值,这样我们就知道男和女的所属类别了,我们就可以用最大似然函数来估新的高斯模型的参数了。重复上述步骤,直到收敛。

多数情况下我们是根据已知条件来推算结果,而极大似然估计是已经知道了结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。

2.EM 算法推导

EM算法要解决的问题是: 

(1)求出每一个样本属于哪个分布 。

(2)求出每一个分布对应的参数。

期望最大算法(EM算法)是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。EM算法缺陷之一:传统的EM算法对初始值敏感,聚类结果随不同的初始值而波动较大。总的来说,EM算法收敛的优劣很大程度上取决于其初始参数。EM,最大优点:简单性和普适性。

我们下面来探讨EM算法的一般形式。

suppose we have a training set  consist of  m independent examples,假设样本的类别z服从某种未知的分布,那么对于这种隐含变量的模型我们可以求出它的似然函数为(求似然函数是为了求解我们假设模型中的各个参数,我们在求解一个分类或者回归问题时,通常需要选定一个模型,比如NB,GDA,logistic regression,然后利用最大似然求解模型的参数):

我们的方法是假设,首先假设一个模型参数θ,然后每个样本来自样本中某个分类的概率p(zi)就能算出来了,似然函数可以写成含有θ的函数,极大化它我们可以得到一个新的θ。新的θ因为考虑了样本来自哪个分布,会比原来的更能反应数据规律。有了这个更好的θ我们再对每个样本重新计算它来自样本某个类的概率,用更好的θ算出来的概率会更准确,有了更准确的信息,我们可以继续像上面一样估计θ,自然而然这次得到的θ会比上一次更棒,如此循环,直到收敛(参数变动不明显了),理论上,EM算法就说完了。

然而事情并没有这么简单,上面的思想理论上可行,实践起来不成。主要是因为似然函数有“和的log”这一项,log里面是一个和的形式,一求导这画面不要太美,直接强来你要面对 “两个正态分布的概率密度函数相加”做分母,“两个正态分布分别求导再相加”做分子的分数形式。m个这玩意加起来令它等于0,要求出关于θ的解析解,你对自己的数学水平想的不要太高。

  怎么办?先介绍一个不等式,叫Jensen不等式,是这样说的:

首先我们来给出Jensen不等式的定义:

定理很简单,如果f是一个凸函数并且二阶导数大于零(上文中有提出),则有。进一步, 若二阶导数恒大于 0,则不等式等号成立当且仅当 x=E[x],即 x 是固定值。若二阶导数的不等号方向逆转,则不等式的不等号方向逆转。如下图:

X是一个随机变量,f(X)是一个凸函数(二阶导数大或等于0),当且仅当X是常数的时候等号成立,如果f(X)是凹函数,不等号反向。  

半路杀出一个Jensen不等式,要用它解决上面的困境也是应有之义,不然说它做什么。直接最大化似然函数做不到,那么如果我们能找到似然函数的一个紧的下界一直优化它,并保证每次迭代能够使总的似然函数一直增大,其实也是一样的。怎么说?画个图你就明白了:

横坐标是参数,纵坐标是似然函数,首先我们初始化一个θ1,根据它求似然函数一个紧的下界,也就是图中第一条黑短线,黑短线上的值虽然都小于似然函数的值,但至少有一点可以满足等号(所以称为紧下界),最大化小黑短线我们就hit到至少与似然函数刚好相等的位置,对应的横坐标就是我们的新的θ2,如此进行,只要保证随着θ的更新,每次最大化的小黑短线值都比上次的更大,那么算法收敛,最后就能最大化到似然函数的极大值处。

构造这个小黑短线,就要靠Jensen不等式。注意我们这里的log函数是个凹函数,所以我们使用的Jensen不等式的凹函数版本。根据Jensen函数,需要把log里面的东西写成一个数学期望的形式,注意到log里的和是关于隐变量Z的和,于是自然而然,这个数学期望一定是和Z有关,如果设Q(z)是Z的分布函数,那么可以这样构造:

所以log里其实构造了一个随机变量Y,Y是Z的函数,Y取p/Q的值的概率是Q,这点说的很清楚了。构造好数学期望,下一步根据Jensen不等式进行放缩:

有了这一步,我们看一下整个式子:

也就是说我们找到了似然函数的一个下界,那么优化它是否就可以呢?不是的,上面说了必须保证这个下界是紧的,也就是至少有点能使等号成立。由Jensen不等式,等式成立的条件是随机变量是常数,具体到这里,就是:

又因为Q(z)是z的分布函数,所以:

把C乘过去,可得C就是p(xi,z)对z求和,所以我们终于知道了:

得到Q(z),大功告成,Q(z)就是p(zi|xi),或者写成p(zi),都是一回事,代表第i个数据是来自zi的概率。

于是EM算法出炉,它是这样做的:

  首先,初始化参数θ

  (1)E-Step:根据参数θ计算每个样本属于zi的概率,这个概率就是Q

  (2)M-Step:根据计算得到的Q,求出含有θ的似然函数的下界并最大化它,得到新的参数θ

  重复(1)和(2)直到收敛,可以看到,从思想上来说,和最开始没什么两样,只不过直接最大化似然函数不好做。

需要额外说明的是,EM算法在一般情况是收敛的,但是不保证收敛到全局最优,即有可能进入局部的最优。EM算法在混合高斯模型,隐马尔科夫模型中都有应用,是著名的数据挖掘十大算法之一。

3.举栗子说明

附上具体应用的EM求解过程:


第二个例子:投掷硬币,不知道到底是A或B哪个投掷出来的,根据投掷的结果,求A B的投掷正面概率。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容