斐波那契查找

相对于二分查找和差值查找,斐波那契查找的实现略显复杂。但是在明白它的主体思想之后,掌握起来也并不太难。

既然叫斐波那契查找,首先得弄明白什么是斐波那契数列。相信大家对这个著名的数列也并不陌生,无论是C语言的循环、递归,还是高数的数列,斐波那契数列都是一个重要的存在。而此处主要是用到了它的一条性质:前一个数除以相邻的后一个数,比值无限接近黄金分割。

就笔者而言,这种查找的精髓在于采用最接近查找长度的斐波那契数值来确定拆分点,初次接触的童鞋,请在读完下文后,自觉回过头来仔细体会这句话。举个例子来讲,现有长度为9的数组,要对它进行拆分,对应的斐波那契数列(长度先随便取,只要最大数大于9即可){1,1,2,3,5,8,13,21,34},不难发现,大于9且最接近9的斐波那契数值是f[6]=13,为了满足所谓的黄金分割,所以它的第一个拆分点应该就是f[6]的前一个值f[5]=8,即待查找数组array的第8个数,对应到下标就是array[7],依次类推。

推演到一般情况,假设有待查找数组array[n]和斐波那契数组F[k],并且n满足n>=F[k]-1&&n < F[k+1]-1,则它的第一个拆分点middle=F[k]-1。

这里得注意,如果n刚好等于F[k]-1,待查找数组刚好拆成F[k-1]和F[k-2]两部分,那万事大吉你好我好;然而大多数情况并不能尽人意,n会小于F[k]-1,这时候可以拆成完整F[k-1]和残疾的F[k-2]两部分,那怎么办呢?

聪明的前辈们早已想好了解决办法,对了,就是补齐,用最大的数来填充F[k-2]的残缺部分,如果查找的位置落到补齐的部分,那就可以确定要找的那个数就是最后一个最大的了。

不妨来看张图,更清楚一点。


image.png

条件:
(1)数据必须采用顺序存储结构;(2)数据必须有序。
原理:
(1)最接近查找长度的斐波那契值来确定拆分点;(2)黄金分割。
时间复杂度:
与拆半查找一样,也是logn。不少博客说,在处理海量数据时,拆分查找的middle = (low + hight)/2,除法可能会影响效率,而斐波那契的middle = low + F[k-1] -1,纯加减计算,速度要快一些。我觉得是扯淡,因为完全可以用middle = (loe+hight)>>2来代替,要知道相比于加减乘除而言,位运算的效率可是最高的哟。

实现:
还是惯例,能上代码就不说话环节。

public class FbonacciSearch {

    /**
     * <p>name: main</p>
     * <p>description: </p>
     * <p>return: void</p>
     */
    public static void main(String[] args) {
        // TODO Auto-generated method stub
        int[] array = { 1, 5, 15, 22, 25, 31, 39, 42, 47, 49, 59, 68, 88, 88,
                88, 88, 88 };
        System.out.println("result: " + fbSearch(array, 31));
    }

    /**
     * name: fbSearch
     * description: 斐波那契查找实现
     * return: int
     */
    public static int fbSearch(int[] array, int a) {
        if (array == null || array.length == 0) {
            return -1;
        } else {
            int length = array.length;
            int[] fb = makeFbArray(20);// 制造一个长度为10的斐波数列
            int k = 0;
            while (length > fb[k] - 1) {// 找出数组的长度在斐波数列(减1)中的位置,将决定如何拆分
                k++;
            }
            int[] temp = Arrays.copyOf(array, fb[k] - 1);// 构造一个长度为fb[k] - 1的新数列
            for (int i = length; i < temp.length; i++) {
                if (i >= length) {
                    temp[i] = array[length - 1];
                }
            }
            int low = 0;
            int hight = array.length - 1;
            while (low <= hight) {
                int middle = low + fb[k - 1] - 1;
                if (temp[middle] > a) {
                    hight = middle - 1;
                    k = k - 1;
                } else if (temp[middle] < a) {
                    low = middle + 1;
                    k = k - 2;
                } else {
                    if (middle <= hight) {
                        return middle;// 若相等则说明mid即为查找到的位置
                    } else {
                        return hight;// middle的值已经大于hight,进入扩展数组的填充部分,即最后一个数就是要查找的数。
                    }
                }
            }
            return -1;
            // return recurse(array, fb, a, low, hight, k);
        }
    }

    /**
     * name: makeFbArray
     * description: 生成指定长度的斐波数列
     * return: int[]
     */
    public static int[] makeFbArray(int length) {
        int[] array = null;
        if (length > 2) {
            array = new int[length];
            array[0] = 1;
            array[1] = 1;
            for (int i = 2; i < length; i++) {
                array[i] = array[i - 1] + array[i - 2];
            }
        }
        return array;
    }

    /**
     * name: recurse
     * description: 递归实现,可以来代替while (low <= hight)遍历
     * return: int
     */
    public static int recurse(int[] array, int[] fb, int a, int low, int hight,
            int k) {
        if (array == null || array.length == 0 || a < array[low]
                || a > array[hight] || low > hight) {
            return -1;
        }
        int middle = low + fb[k - 1] - 1;
        if (a < array[middle]) {
            return recurse(array, fb, a, low, middle - 1, k - 1);
        } else if (a > array[middle]) {
            return recurse(array, fb, a, middle + 1, hight, k - 2);
        } else {
            if (middle <= hight) {
                return middle;
            } else {
                return hight;
            }
        }
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容